Article 9316

Title of the article

PRIMARY RADIATION DAMAGE OF THE Zr-Nb BINARY ALLOY: MOLECULAR DYNAMICS MODELING

Authors

Kapustin Pavel Evgen'evich, Postgraduate student, Research Technological Institute named after S. P. Kapitsa, Ulyanovsk State University (42 Lva Tolstogo street, Ulyanovsk, Russia), kapustinpe91@gmail.com
Svetukhin Vyacheslav Viktorovich, Doctor of physical and mathematical sciences, professor, leading researcher, Research Technological Institute named after S. P. Kapitsa, Ulyanovsk State University (42 Lva Tolstogo street, Ulyanovsk, Russia), slava@sv.uven.ru
Tikhonchev Mikhail Yur'evich, Candidate of physical and mathematical sciences, head of laboratory of computer modelling of inorganic materials, Research Technological Institute named after S. P. Kapitsa, Ulyanovsk State University (42 Lva Tolstogo street, Ulyanovsk, Russia), tikhonchev@sv.ulsu.ru

Index UDK

544.022.342, 544.022.344.2

DOI

10.21685/2072-3040-2016-3-9

Abstract

Background. In this paper the distribution of niobium atoms in interstitial configurations after the passage of the atomic displacement cascade with the energy of primary knock-on atom (PKA) 10 keV in the binary alloy of Zr – 1 % Nb and Zr – 2 % Nb at the model crystallite temperature of 0, 300 and 600 K was examined. Eight configurations of the interstitial atom in HCP-Zirconium with the embedded niobium atom were considered.
Materials and methods. In this work two binary alloys Zr – 1 %Nb and Zr – 2 %Nb with the HCP lattice were considered. With the help of the molecular dynamics method a computer simulation was carried out using the many-body potential of interatomic interaction.
Results. The numerical values of the formation energy of the embedded niobium atom and the binding energy at 0 K were obtained. The analysis of the niobium at-oms distribution in single interstitials, dimers and interstitial clusters, the size of which was not less than 3 defects, was performed.
Conclusions. SIA configurations with a high positive binding energy were determined. Changes of the model crystallite temperature, atomic niobium proportion, interatomic potential influence the niobium distribution in the interstitial configurations.

Key words

zirconium, zirconium-niobium, molecular dynamics method, interstitials, atomic displacement cascades.

Download PDF
References

1. Tikhonchev M. Yu., Svetukhin V. V. Voprosy materialovedeniya [Problems of materials science]. 2011, vol. 68, no. 4, pp. 140–152.
2. Shishov V. N., Markelov V. A., Nikulina A. V., Novikov V. V., Peregud M. M., Novoselov A. E., Kobylyanskiy G. P., Ostrovskiy Z. E., Obukhov A. V. Voprosy atomnoy nauki i tekhniki. Ser. Materialovedenie i novye materially [Problems of nuclear science and technology. Series: Materials science and new materials]. 2006, vol. 67, no. 2, pp. 313–328.
3. Shishov V. N., Peregud M. M., Nikulina A. V., Pimenov Yu. V., Kobylyansky G. P., Novoselov A. E., Ostrovsky Z. E., Obukhov A. V. 14 International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1467 (June 13–17, 2004, Stockholm). Stockholm, 2006, pp. 666–685.
4. Novoselov A. E., Pavlov S. V., Polenok V. S., Markov D. V., Zhitelev V. A., Kobylyanskiy G. P., Kostyuchenko A. N., Volkova I. N. Fizika i khimiya obrabotki materialov [Physics ad chemistry of materials processing]. 2009, no. 2, pp. 24–32.
5. Averin S. A., Panchenko V. L. Voprosy atomnoy nauki i tekhniki. Ser. Materialovedenie i novye materially [Problems of nuclear science and technology. Series: Materials science and new materials]. 2006, vol. 66, no. 1, pp. 24–30.
6. Neustroev V. S., Belozerov S. V., Makarov E. I., Obukhov A. V. Fizika metallov i metallovedenie [Physics of metals and physical metallurgy]. 2014, vol. 115, no. 10, pp. 1070–1074.
7. Field K. G., Barnard L. M., Parish C. M., Busby J. T., Morgan D., Allen T. R. Journal of Nuclear Materials. 2013, vol. 435, no. 1-3, pp. 172–180.
8. Tikhonchev M., Muralev A., Svetukhin V. Fusion Science and Technology. 2014, vol. 66, no. 1, pp. 91–99.
9. Miyashiro S., Fujita S., Okita T. Journal of Nuclear Materials. 2011, vol. 415, no. 1, ppp. 1–4.
10. Korchuganov A. V., Zol'nikov K. P., Kryzhevich D. S., Chernov V. M., Psakh'e S. G. Voprosy atomnoy nauki i tekhniki. Ser. Termoyadernyy sintez [Problems of nuclear science and technology. Series: Thermonuclear synthesis]. 2015, vol. 38, no. 1, pp. 42–48.
11. Beelera B., Astab M., Hosemannc P., Grønbech-Jensen N. Journal of Nuclear Materials. 2015, vol. 459, pp. 159–165.
12. Hengstler-Eger R. M., Baldo P. M., Beck L., Dorner J., Ertl K., Hoffman P. B., Hugenschmidt C., Kirk M. A., Petry W., Pilkart P., Rempel A. Journal of Nuclear Materials. 2012, vol. 423, no. 1-3, pp. 170–182.
13. Kapustin P. E. Izvestiya Samarskogo nauchnogo tsentra RAN [Proceedings of Samara Scientific Center of RAS]. 2013, no. 4, pp. 1131–1136.
14. Kapustin P. E., Tikhonchev M. Yu., Svetukhin V. V. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2015, no. 2 (34), pp. 148–163.
15. Long F., Balogh L., Brown D. W., Mosbrucker P., Skippon T., Judge C. D., Daymond M. R. Acta Materialia. 2016, vol. 102, pp. 352–363.
16. Cochrane C., Daymond M. R. Materials Science and Engineering: A. 2015, vol. 636, pp. 10–23.
17. Matsukawa Y., Yang H. L., Saito K., Murakami Y., Maruyama T., Iwai T., Murakami K., Shinohara Y., Kido T., Toyama T., Zhao Z., Li Y. F., Kano S., Satoh Y., Nagai Y., Abe H. Acta Materialia. 2016, vol. 102, pp. 323–332.
18. Mendelev M. I., Ackland G. J. Philosophical Magazine Letters. 2007, vol. 87, no. 5, pp. 349–359.
19. Lin D. Y., Wang S. S., Peng D. L., Li M., Hui X. D. Journal of Physics: Condensed Matter. 2013, vol. 25, no. 20, p. 209501.
20. Muralev A. B. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk [Proceedings of Samara Scientific Center of RAS]. 2012, vol. 14, no. 4, pp. 1045–1049.
21. Muralev A. B., Tikhonchev M. Yu., Svetukhin V. V. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2013, no. 1 (25), pp. 144–158.
22. Peng Q., Ji W., Huang H., De S. Journal of Nuclear Materials. 2012, vol. 429, no. 1-3, pp. 233–236.

 

Дата создания: 19.12.2016 11:24
Дата обновления: 20.12.2016 09:36